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1. For the sake of greater compactness we will make use of the matrix
notation. The number of rows and columns of the matrices will, as a rule,
not be mentioned. Unless otherwise specified, they can be arbitrary as
long as the products occurring in formulas have a meaning. The unit
matrix will be denoted by the letter E, or E when it is necessary to
give its order. The transposed matrix of some matrix A we shall denote
by A%; thus, in particular, x° will be a row if x is a colum. If 4 is a
square matrix then |A| will represent its determinant; sp (4) will de-
note its trace (that is, the sum of the elements of the main diagonal).
If A= (ai.), B = (b,;) are matrices with the same number of rows and

the same number of c;iumns then the following relations hold:

sp(AB) = sp(BA') = sp (A'B) = sp (B'd) = Y ayhy;  (19)

Besides the ordinary matrices whose elements are numbers or functions
of time, we will deal with columns consisting of random quantities or
random processes (which, obviously, in particular cases can coincide with
definite numbers or functions of time). The arguments of the functions
and of the random functions of time will always be indicated.

For our purposes the random quantities will be completely character-
ized by their initial second moments. If a(t) and b(t) are random columm
vectors, then y_;(t, r) will denote the matrix of the second moments of

93



94 K. Shtaiden

their components
Yab (¢, T) = M [a(t) b’ (v)] (1.2)
Here M stands for the mathematical expectation.
It is obvious that
Yo (£, 7) = ¢, (7, ?) (1.3)

In place of ¢ ,(t, t) we shall write ¢ ,(t). We will assume the ex-
istence of finite second moments, except for the case of white noise
when the matrix of the second moments has the form

Vaa (8, T) = A(t) 8 (¢t — 1) (1.4)

2. Suppose that we are given a dynamic system described by the equa-

tion ¢

a(t) = s(t) — Sh(t, )y (v) dv (2.4)
Oy

Here z(t) is a column of the coordinates of the system; s(t) is a
colum of given random quantities which characterize the external re-
actions and state of the system at the initial instant of time t = 0;
y(r) is a column of the coordinates of the regulating elements, and
h(t, r) is a given matrix.

The regulating reactions y(t) are formed from the given colum vector
p and from the values of the given random colummn vector r(r), 0 <r < t,
as a sum of two linear operators on p and r(r). The set of all random
colum vectors, obtained in this manner for all possible linear operators
which are commtative with the operation of mathematical expectation, we
will denote by L(t). L(t) is exactly the set of all random column vectors
a for which the function Ygo = 0, if Vg = 0 and tﬁﬁr(r) =0(0<r<t).

There arises the problem of finding a y(t) € L(t) (0 <t < T) for
which the mean square deviation of the system from a given position xp
at a given instant of time T > 0 will be minimal. Without restricting the
generality, one may assume that xp= 0, and

e2(I) = M2’ (T)z(T)] = 3p $ex (T) = min (2.2)

In order to achieve uniqueness for the optimal system, we impose upon
y(t) restrictions of the form

li < ki (i = I,..., m) (2.3)

where the k. are given numbers, and the I, are functionals of the form
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L=M S MOy d (i=1,..,m) (2.4)

that is, the l; are the values of the integral of the mean square values
of the coordinates of the ith regulating element; the A;(t) are given
weight functions. They can be arbitrary functions of time which for all
t are greater than some positive number

M) >A>0 (i=1,...,m) (2.5)

In the following section there will be given a solution of this
general problem. The results are applied to a problem on the synthesis
of an automatic control system.

3. Let us assume that we have found the optimal system. Then
e (T) >0 (3.1)
for all variations 8y(t) that satisfy the conditions
U+ 8Ly t=1,0..,m) (3.2)
(the I, are defined by the Equation (2.4)).

As is usually done, we assume that the variations are infinitesimally
small. The inequalities (3.2) will therefore be valid for arbitrary vari-
ations if 1, < k;. For those values of the index i for which I, = k,,
the inequalities (3.2) are equivalent to the inequalities

8L, 0 (3.3)

Thus, we have the inequalities (3.1) for all variations that satisfy
the inequalities (3.3) for those i for which I; = k;. Since this is true,
in particular, when 81, = 0, there exist Lagrange multiples p; such that

de? (T) + Zpi 8, =0 (3.4)

for.arbitrary variations 8y(t). The summation is performed here over
these values of i for which . But by assuming that p; = 0 for the
other values of i (for which i < i ;) one can sum over all the indices
(from 1 to m). If one varies only the ith component of the column y(t),
t.hen 81, #£ 0, while 81, = 0 (i # j), and by (3.4), (3.3) and (3.1),

;> 0. Thus we have tﬂe condition

>0, p=0, it L <k (i=1,...,m) (3.5)

If we set
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WA (t). . . O
B()= ” ....... D (3.6)
0. . . pPpmdy (2)

and take account of the relations (2.2) and (2.4), we may write the
Equations (3.4) in the form

sp [dxe (T) + & § B (D) Py (1) dt] = 0 3.7)
From this we obtain directly °
sp [0, (7) + §B () ¥y &y (5) de] = 0 3.8)
By Equation (2.1) we have o
8z (T) = — ST k (T, 1) by (2) dt (3.9)

(]
Let us substitute this expression into the Equation (3.8), and apply
Formula (1.1). Then we obtain
T
spS Mlw (t) 8y'(t)1 dt = 0 (3.10)

0
Here »(t) is defined by the formula

w(®)=B@Oy@® —r(T,1t) (T (3.11)
Since y(t) € L(t), this is equivalent to the equations
PYup (£) = 0, Yyr (£, T) = 0 t>1) (3.12)

One can prove, conversely, that every control system that satisfies
the conditions (3.12) and (3.15) minimizes ¢ 2(T) among all systems that
satisfy the restrictions (2.3). For this purpose let us assume that y (t)
is the response of such a system. Then we set

e (M=Mlz' (T)z ()], n*(T)=sp\B(), ()d
(3.13)

e (I =Mz, ()2, (1)), 0 2(T) = sp\ B () Yyuva (1) A2

Cedny P

(In the definition of ntz(Tﬁ, B(t) has the same meaning as in n2(T)!).
Now we define the differences

Az (1) =z, (8) — z (1), by () =y. () —y (1) (3.14)
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and Ae?(T), An*(T) in an analogous manner. From the Equations (3.12)
it follows that the symbol (3.10) can be replaced by the symbol A. Since
this is also the case for the Equation (3.9), we obtain an equation of
finite differences
T
P (rax (1) + | B (0 byay () d2} = 0 (3.15)

0

This equation corresponds to the equation of variations (3.8). On the
basis of the Equations (3.13) we have the relations

Ae? (T) =2 sp ‘prx (T) + sp "prAx (T) (3~16)
T T
(1) = 25p | B O bay Ot +5p (B OPassy &t (3.47)

The condition (3.5) shows that q*2(73 < p¥(T), i.e. Ag¥(T) < 0.
Since B(t) is a positive semidefinite matrix, the second terms on the
right-hand sides of Equations (3.16) and (3.17) are nonnegative. Hence,

T

5p \B () buay () d2 <O

0
Then, in view of Equation (3.15), we have
sp¥zax (T) >0

From Equation (3.16) it now follows that Ae®(T) > 0, which was to be
nroven.

If all the p, > 0, i.e. if B(t) is a positive definite matrix, we
have the strong inequality Ae2(T) > 0. In the case that all p;> 0, and,
hence, all I, = k;, the behavior of the optimal system y(t) is definite
with one sign.

Thus we have proved that the set of optimal systems corresponds to
the set of solutions of the Equations (3.12) with the numbers p; satis-
fying the conditions (3.5).

4. We shall solve the Equations (3.12) with the best mean square
approximation o(r) of the random vector s(T) by means of random vectors
from L(r). Here o(r) is determined uniquely by the equations

Yoo (T) = Ogp (T)r Yor (Ta f)) = Pgr (Ty 0) t>9) (4.1)

Let us introduce the auxiliary quantities £(r), n(t, r) defined in a
similar way as the best mean square approximations of the vectors x(T),
y(t), respectively, i.e. &(r), n(r) & L(r), and
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$eo (3) = o (1), Yer (1, 8) =9, (T, )
Pue (¢, T) = WYy (t), Pyr (t; T, ﬁ) = Py {t, 9) (r>® {4.2)

In view of the uniqueness of this type of approximations, the Equa-
tions (3.11) and (3.12) yield

BOnt, v —R T, E(x)=0 (t>7) (4.3)
The Equation (2.1) leads to
T
t@=oc@®—\r T, 9ne v (4.4)
1
Obvicusly, we have
ni, =001 =y(@ ¢t (4.5)
and {4.4) can, therefore, be written in the form
* T
t@W=0@—{r one a— {r@one e @e
¢ T

Suppose that {B(t){ # 0, i.e. all p; > 0. In this case we obtain with
the aid of (4.3)

cW=1@t@ {100 (&.7)
where ’
T
Y@ =E+{r@opr 0w @9 (4.8)

T

Since y(r) is a positive definite matrix, {y(r)| # 0. We thus obtain

E@ =y @Wo@ -1 0o (4.9)
4]
The solution Function y(t) is determined from this by the equation

y(@O =PRI, HEQ (4.10)

In order to find the equations for the Lagrange multipliers in a
closed form, we substitute the found y(t) into the Expression (2.4) for
the functional I.. If we denote the ith column of the matrix A{(7, t) by

h‘.(T, t), and introduce the matrices
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T

Fi(‘)*“%ﬁh(ﬂt)h{(?,r)dt (i=te..,m)  (440)

we obtain
T
=— oo { Fo() e () @ (4.12)

pi?
9

In what follows we shall assume that J%U(t) exists. Since by the de-
finition of a(t)

Yoo (£, ¥) = Yoo (min {2, 1})
the Equation (4.9) yields
Pee (0) = ¥ (0)hoo (0) Y71(0), sz (V) = Y7HT) Yoo (¥) Y72 (V) (4.13)

Furthermore, one can easily verify that ¢ _.(r) is a positive definite
matrix.

Integration by parts of the Expression (4.12) leads to (4.14)
. .

L= e [T O T O 17 (0 %ee (0 + {17 (0 T (0) 17 (9) e (1) ]

Except for the factor l/ﬁiz, the u. enter into the Equations (4.14)
only through y(r) which is given by tﬂe relation

() =E+ PL T; (1) (4.15)
i=1 i
From the Equations (4.14) and (4.15) one can obtain the equations
l; = k; which deteTmine the p;. The optimum ¢*(T) is obtained in the

3 ¥
form

e (T) = sp {¥ss (T) — Yoo (T)} + Ly (4.16)

where

T
L=5p[1" 0% O1 O+ 17 O %® 1" O] @17
0
In the general case, at least one solution is obtained in the form of
a limit when some of the p,; tend to zero (compare Section 5). With the
aid of the Equations (3.12) it is not difficult to verify that the ith
coordinate of y(t) has an infinite number of possible values if l; < k.
Hence, in the given problem, the only case of interest, except for the
limiting case, is the case of nonzero yu; treated in this section.
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3. In order to establish the existence of p; satisfying the condi-
tions (3.5), we consider the quantity ! defined by the relation
T

D= 5p [17 O %ao (O + | 17 (0) on () ] (5.1)

If one compares this expression with the Equations (4.14), (4.15) and
(4.17), one can obtain

b=l + > pi by by = 5— (5.2)

i=1

Taking into account the fact that I and l; are not negative, ome can
prove that ! is a continuous function of p; in the closed region p; > 0.
Therefore, the function

m
% § (Ph oo ey p'm) =1 Z ki]li (5.3)
(zl
will take on at some point g, > 0 a maximum value H . If all the
B0 > 0, then I, = k;, and the y(t) found in the preceding sections will
be the sought optimal value. Let us now assume that, without restricting
the generality,

o >0  (=1..,p) po=0 (=p+1t...,m
For arbitrary p;; > 0, let us consider

__fme (<P
”“‘hmlﬁ>p+n (5-4)

when p » 0. One can show that, when g » 0, y(t) tends to a value y*(t)
which is a solution of the Equations (3.12) when p, = p;o (i =1, vea,m).

For this solution, the functionals ! are the limits of the func-
tionals ;. When i < p, we have 1° = k;, i.e. the conditions (3.5) are
satisfied, The remaining 1 ° (i = p+ 1, ..., m) depend on the values
#;;- The following relations, similar to those of (5.2), will hold:

2 o o on
= Z pa b, I = T (5.9)
i=p+1 '
where
T
It = sp [Bl (0) oo (0) + g B1 (1) s (1) dt} (5.6)

0

The positive semidefinite matrix B,(t) is determined by means of
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v m
AW=E+R =00, BO= 3 L@ 69
i=1 f=p41

and by some matrix U(t), through the equations

B)A () =B ) A1 (t) B (t) B+ (1), Bit) =U@®B@A*(@) (5.8

From H < H_, follows the inequality

< 2 Wig ki (5.9
i=p-+1

If m=p+ 1, we obtain 1 ° < k_ directly from (5.5) and (5.9). In
order to prove in the general case the existence of those p,, for which
the inequalities 1 ° < k; (i = p+ 1, ..., m) are satisfied, one has to
establish, again, that 1’ is continuous in some closed region g ; > 0.
Therefore, the function l” will take a maximum value at some point p,,
of the region p;; > 0, Zp k., = 1. For those i for which u;, > 0, one
can prove directly that 1° < k..

If some of the p;, = 0, one has to go to the limit again, and repeat
all arguments. Since Zp k. =1, not all the p,, are equal to zero, and
one can prove by induction that there exists a solution y(t) that satis-
fies the conditions !, <k, (i=p+ 1, ..., m).

From the relations (5.6) and (5.9) it can be seen that the system of
equations I, = k; has a solution p; > 0 for arbitrary (finite) k; > 0 if
for arbitrary p;, > 0 (i =1, ..., p), and for some p;; > 0 (i =p+ 1,
vens W),

T
sp\ By (1) oo () dt = oo (5.10)

0

(Hereby one must, of course, take into account all p=0, ..., m-1
and all possible permutations of the indices i.)

If K(T, t) is an analytic function of ¢ (this is true, in particular,
in the case of a stationary object), and if ¢ (t) is a continuous func-
tion of t when t = T, then the following assertion is true. If the in-
equality

By’ (Ts8) oa(T) =0 (5.11)

is false for every colum hi(T, t) of the matrix h(T, t) and for every
t, then there exists, for every k; a uniquely defined optimal system
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with positive g ..

6. As an application of the general results, we consider the problem
of the synthesis of an automatic control system. Let us suppose that we
are given an object whose motion is described by a system of linear
differential equations, and that the external disturbances are random
processes related to white noise by means of differential equations. By
menas of a change of coordinates, the equations can always be reduced to
the form

E@=Co®L® +Cr@®y @)+ Ca()u() (6.1)

#here {(t) is a colum of the coordinates of the system, u(t) is white
noise, and the C; are given matrices. For the control elements we take
some linear combinations x(t) = M{ (t) of the coordinates of the system.
Suppose that we are measuring linear combinations N¢{ (t) with errors that
are characterized by a process n(t).

Just as above, we set ourselves the problem of minimizing €2(T) under
the conditions ;< k;, but we are looking for a dependence y(t) on p,
and on 2(¢t) = N (t) + n(t). In the given case we obtain a system of
linear differential equations. We are given random quantities p, {,
(initial values of the coordinates (t)), and random processes u(t) and
n(t). Let us suppose that u(t) and n(t) represent white noise and that
they are not correlated, not in p and not in ¢, i.e.

You(t) =0, Yxu (=0, ‘I’fn (=0, Yy (t) = 0
Yuu (t, T) = E} (t - 17)1 Pon (ti f) = E} (t - 17)1 WYy (t, T) =0

The hypotheses on n(t) have the physical meaning that all the quanti-
ties N{ (t) are measured independently of each other, with high-frequency
errors that do not depend on the external reactions or on the state of
the system.

(6.2)

With regard to the column p we assume, without loss of generality,
that either p = 0, or its components are linearly independent and

Yoo = E.

7. In order to reduce this problem to the problem treated in the pre-
ceding sections, we introduce the matrix of the fundamental solutions

R(t), given by the equations
R@® =GR, R(O)=E (7.1

and set, for the sake of brevity,

Di() =RiI(@W)Gi(), D:(t) =R1(t)Gs(t), M =MR(T) (1.2)
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The Equation (6.1) can then be reduced to the form (2.1), whereby
t

s (t) = MR (¢) [t:,o +S D:(v) u (%) dt] (7.3)
h{t, 1) = — MR (t) D1 (v) (7.4)

In order to determine r{r) in the expression for z(t), we set y = 0.
We thus obtain

r(t) = NR () [ L, + gDz (t) u (1)d1:] + () (7.5)

0

With the aid of the Equation (4.1) it is not difficult to verify that
in our case

t

o () = P Obeor + Q@O R @N r(mar] (16

]
Hereby,
PO)=QWR ()N'NR(1), P(O)=E
QW =P@O)D:(t)Ds' (1), Q0 =%rr, — Pro¥'ve (7.7)
The Equations (4.9) and (4.10) yield y(t) expressed in terms of o(t).
This expression in conjunction with (7.6) and the equation expressing

r(t) in terms of z(t) and y(t), yields the sought system of equations.
From (6.1) and (7.5) we obtain

i
r(t) =z () — NR () SDI (¥) y (v) dx (1.8)

0

and after a number of transformations, we obtain, finally,

y () = P ()D, (OMy'y™* ()) M () (7.9
Here the auxiliary columm n(t) satisfies the differential equation
N (@) -+ [P P () —Dr (9B~ (1) D’ (8) My (1)) Maln (1) =
= —P1() Q)R (t) N'z (t) (7.10)
with the initial condition

1 (0) =Yeop (7.41)

The matrices ¥, _(0) and ¢ _(t) are obtained with the aid of Equations
(7.5) and (7.6) in the form
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Yoo (0} = MyYee [Migy, I’
Voo () = MPT () Q) V()N [MAP () Q() R () N')  (7.12)

In the particular case when the quantities x(t) are linear combina-
tions of the measured quantities N{ (t) (i.e. when N = UM), the
criterion (5.11) indicates physically that for zero y.(t) (j £ i) the
optimal (in the sense of the least ¢*(T)) control can be selected inde-
pendently of z(t) (i.e. the measurements z(t) will not make it possible
to decrease ¢ 2(T) with the aid of only the ith regulating element).

8. In a concrete case the computing procedure is as follows. One has
to be given the matrices Gy(t), Gy(t), Gp(t), N, M, Yy or, Wy, with
the weight functions A (t), and with the numbers k; and T.

First one has to compute R(t) as a solution of the system of differ-
ential Equations (7.1). Next one determines R !(t), D (1), D,(t), M,,
['.(t) (by the use of the Equations (7.4) and (4.11), P(¢), Q(t) as the
solution of the system of differential Equatiens (7.7), i), ¢, (0)
and ¢, (t). With the aid of the Equations (4.14) and (4.15), one deter-
mines the numbers p; from the system of equations l; = k;. After this
one can compute 8(t), y(t), y"}(t), find the optimal value €*(T) with
the Equations (4.16) and (4.17) and obtain the optimal regulator from
the Formulas (7.9}, (7.10) and (7.11).

In the case of a stationary object and stationary noises, i,e, when
Gy, Gy, Gy, N, M, and Ai do not depend on t, R(t) is determined from a
system with constant coefficients. The Equations (7.7) can be reduced to
a system with constant coefficients.

PORI(]=—RORIOIG + QR OINN
[QWR (O =PRI GG + [QOR 1G (8.1

so that in this case the coefficients of the equations of the optimal
control are rational expressions in ¢ and exponential functions of time.

The subject matter of the present work is close to certain investigs-
tions published earlier, The approach to the solution (Sections 3,4) are
based on general methods developed in {1]. The problem of the optimal-
ization at a given time moment was considered for the discrete case by
Booton [ 2 ].

If one denmotes by £2° the optimal value €2(T), then the problem is
equivalent to the minimizing of the functional Epiti among all controls
for which e 2(T) < €,°. In this formulation, the problem is similar to
the ones considered, for example, in [3]. The essential difference is
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that we were looking for a control that would be optimal under given
(definite or random) initial conditions. This permitted us to confine
ourselves to the knowledge of the second moments of the random functions.

The solution of the problem with restrictions (definitiom o(¢),
Section 7) was given in [4 ].
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