
ON TRE SY-NTRESIS OF LINEAR AUTOMATIC CONTROL 
SYSTEMS WITE ROUNDS ON TRE DISPLACEMENTS 
OF TRE REGULATING ELEMENTS USING TRE 
CRITERION OF MINIMUM MEAN SQUARE ERROR 

AT ANY GIVEN INSTANT OF TIME 

(0 SINTESE LINEINYKE SISTEK AVTOKATICEESKOGO 

BEGULIBOVANIIA PBI OGBANICHENNYKB 

SHESlICUKNIIAKE BEGULIBUIUSUCEIKH OBGANOV 

PO KBITEBIIU MINIYUMA SBEDNEKVADBATICIIESKOI 

OSEIBKI V ZADANNYI MOMENT VBEMENI) 

PYY Vo1.26, No.1, i962, pp. 70-79 

K. SHTAIDBN 
(Dresden) 

(Received July 30, 1961) 

1. For the sake of greater compactness we will make use of the matrix 

notation. ‘Ihe number of rows and columns of the matrices will, as a rule, 

not be mentioned. Unless otherwise specified, they can be arbitrary as 

long as the products occurring in formulas have a meaning. The unit 

matrix will be denoted by the letter B, or En when it is necessary to 

give its order. The transposed matrix of some matrix A we shall denote 

by A’.; thus, in particular, x’ will be a row if x is a colunm. If A is a 

square matrix then 1 A 1 will represent its determinant; sp (A) will de- 

note its trace (that is, the sum of the elements of the main diagonal). 

If A = (a. .), B = (b . .) are matrices with the same number of rows and 

the same &ber of co umus ‘i then the following relations hold: 

sp (AB’) = sp @A’) = sp (A’B) = sp (B’A) = 2 l+!Q 
L j 

(1.1) 

Besides the ordinary matrices whose elements are numbers or functions 

of time, we will deal with columns consisting of random quantities or 

random processes (which, obviously, in particular’ cases can coincide with 

definite nuakrs or functions of time). ‘Ihe arguments of the functions 

and of the random functions of time will always be indicated. 

For our purposes the random quantities will be completely character- 

ized by their initial second moments. If a(t) and b(t) are random column 

vectors, then +=*(t, r) will denote the matrix of the second moments of 
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their components 

%b UP T) = M [a (0 b’ (r)] 

Here M stands for the mathematical expectation. 

(1.2) 

It is obvious that 

gab (6 r) = 9,; (tc t) (1.3) 

In place of $,,b< t, t) we shall write 9 
istence of finite second moments, except r 

,,( t) . We will assume the ex- 
or the case of white noise 

when the matrix of the second moments has the form 

4aak z) = A(t) 6 (t - 7) (4 -4) 

2. Suppose that we are given a dynamic system described by the equa- 
tion ! 

z(t) = s(t) -\h(t, r)y(r)d7 (2.4) 
(I 

Here x(t) is a column of the coordinates of the system; s(t) is a 
coltmm of given random quantities which characterize the external re- 
actions and state of the system at the initial instant of time t = 0; 
y(r) is a column of the coordinates of the regulating elements, and 
h( t, r 1 is a given matrix. 

The regulating reactions y(t) are formed from the given column vector 
p and from the values of the given random column vector r(r ), 0 < r < t, 
as a sum of two linear operators on p and r(r). ‘Ike set of all random 
collnm vectors, obtained in this manner for all possible linear operators 
which are carmutative with the operation of mathematical expectation, we 
will denote by L(t). L(t) is exactly the set of all random column vectors 
a for which the function +!J@ = 0, if $+, = 0 and $P,(r) = 0 (0 < 7 < t). 

‘Ihere arises the problem of finding a y(t) E L(t) (0 d t < T) for 
which the mean square deviation of the system from a given position XT 
at a given instant of time T> 0 will be minimal. Without restricting the 
generality, one may assure! that XT= 0, and 

e”(T) = M[z’ (T)s(T)l = sp &(T) = min (2-2) 

In order to achieve uniqueness for the optimal system, we impose upon 
y(t) restrictions of the form 

li < ki (i = I,..., m) (2.3) 
where the ki are given numbers, and the 1, are functionala of the form 
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T 

li = M s hi (t) _?ji* (t) dt (i = i,..., m) (2.4) 
0 

that is, the Zi are the values of the integral of the mean square values 
of the coordinates of the ith regulating element; the hi(t) are given 
weight functions. They can be arbitrary functions of time which for all 
t are greater than some positive number 

A* 0) > h > 0 (i = I,. . ., m) (2.5) 

In the following section there will be given a solution of this 
general problem. 'Ihe results are applied to a problem on the synthesis 
of an automatic control system. 

3. Let us assume that we have found the optimal system. 'Ihen 

8s’ (T) > 0 (3.4) 

for all variations 6y(t) that satisfy the conditions 

4 -t 64 < k, (I = I,.. .,m) (3.2) 

(the Ei are defined by the Equation (2.4)). 

As is usually done, we assume that the variations are infinitesimally 
small. The inequalities (3.2) will therefore be valid for arbitrary vari- 
ations if li < ki. For those values of the index i for which Ii = ki, 
the inequalities (3.2) are equivalent to the inequalities 

&li\< 0 (3.3) 

Thus, we have the inequalities (3.1) for all variations that satisfy 
the inequalities (3.3) for those i for which 2, = ki. Since this is true, 
in particular, when 6li= 0, there exist Lagrange multiples pi such that 

6E” (T) + zpi 6Zi = 0 
i 

(3.4) 

for.arbitrary variations 6y(t). 'Ihe summation is performed here over 
these values of i for which I. = k.. Fht by assuming that cc. = 0 for the 
other values of i (for which 1. < 1.) one can sum over all ihe indices 
(from 1 to n). If one varies o&y tie ith coqonent of the calm y(t), 
then 61, f 0, while 61.8 0 (if j), and by (3.4), (3.3) and (3.1), 
Bi > 0. 'Ihus we have t e L condition 

pi >, Ov pi’= O? if li<ki (i=l,. . . ,m) (3.5) 

If we set 
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Plb (t) * - * 0 
S(t)= . . . . . . . R (3.6) 

0 . . . lim~m(t) 

and take account of the relations (2.2) and (2.4), we may write the 
Equations (3.4) in the form 

SP [W*x (T) + d i S(t)q&&)dtl = 0 (3.7) 
0 

From this we obtain directly 

SP [~)x~, (T) + is (t)&$, (t)dtl = 0 
0 

(3.8) 

By Equation (2.1) we have 

T 

8x (7’) = - \ h (T, t) by (t) dt 

0 

(3.9) 

Let us substitute this expression into the Equation (3.8), and apply 
Formula (1.1). Then we obtain 

T 

sp 
s 
M[w (t) &J(t)1 dt = 0 (3.10) 

0 

Here r(t) is defined by the formula 

w (0 = P (0 Y 0) - h' (T, 0 2 (T) 

Since y(t) EL(t), this is equivalent to the equations 

(3.11) 

%oP (0 = 0, klr (t, r) = 0 
One can prove, conversely, that every control 

the conditions (3.12) and (3.15) minimizes ~~(7') 
satisfy the restrictions (2.3). For this purpose 
is the response of such a system. Then we set 

T 

@>,r) (3.12) 

system that satisfies 
among all systems that 
let us assume that y,(t) 

es (T) = M [x’ (T) x (T)], 9 (T) = SP \ P (0 9v,, (0 dt 
0 

(3.U) 

e,*(T) = M i%*‘(T) z, (T)l, rl.’ VI = sp[ F3 (t) %,v, 0) dt 
0 

(In the definition of q,*(T), /3(t) h as the same meaning as in q*(T)!). 

Now we define the differences 

Ax (t) = x, (t) - x (t), AY (t) = Y, (t) - Y (t) (3.14) 
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and Ac2(7’), Aq2(7’) in an analogous manner. From the Equations (3.12) 

it follows that the symbol (3.10) can be replaced by the symbol A. Since 

this is also the case for the Equation (3.9), we obtain an equation of 

finite differences 
T 

SP {+xAx tT) + \ p tt) *VA!, tt) dt) = o (3.15) 
0 

‘Ihis equation corresponds to the equation of variations (3.8). On the 

basis of the Equations (3.13) we have the relations 

Ae2 (T) = 2 SP $,A, (T) + SP$A,A, (T) (3.16) 

Aq2 (T) = 2 SP [ B (1) $UA~ (0 dt + SP \ B (t) $A~A~ (t) dt (3.17) 
0 0 

The condition (3.5) shows that ~~~(2’) G q2(T), i.e. Aq’(T) < 0. 

Since /3(t) is a positive semidefinite matrix, the second terms on the 

right-hand sides of Equations (3.16) and (3.17) are nonnegative. Hence, 

T 

sP '8 (+ii~, (t> dt < 0 
I 
0 

Then, in view of Equation (3.15), we have 

Sp'i'xA, (T) > 0 

From Equation (3.16) it now follows that Ar 2(7’) > 0, which was to be 

nroven. 

If all the pi I> 0, i.e. if /3(t) is a 

have the strong inequality Ac2(7’) > 0. 

hence, all li = ki, the behavior of the 

with one sign. 

positive definite matrix, we 

In the case that all pi ‘> 0, and, 

optimal system y(t) is definite 

‘lhus we have proved that the set of optimal systems corresponds to 

the set of solutions of the Fqnations (3.12) with the numbers pi satis- 

fying the conditions (3.5). 

4. We shall solve the Equations (3.12) with the best mean square 

approximation u(r) of the random vector s(T) by means of random vectors 

from L(r). Here u(r) is determined uniquely by the equations 

%P (r) = o,P (T), $V (r, fl) = %r (TV +e) (v>ft) (4.1) 

Let us introduce the auxiliary quantities t(r), q(t, r) defined in a 
similar way as the best mean square approximations of the vectors x(T), 

y(t), respectively, i.e. e(r), n(r ) E L(r ), and 
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tions (3.11) and (3.12) yield 

Obviously, we have 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

*pose tht If%tl~ f 0, i.e. all pi > 0. In this case we obtaifi tith 
the aid of (4.3) 

Since Y(Y) is a positive definite matrix, \y(r)/ f 0. We thus obtain 

+d 
E (T) = y-f (r) a ($ - 1 Jg-f (t) 0 (0 dt (4.9) 

0 

'I&e solution Function y(t) is determined from this by the evatim 

Y 0) = 8-l 0) A' (TV 0 E (6 (4.10) 

In order to find the equations fox the Lagrange multipliers in a 
closed form, we substitute the found y(t) into the Expression (2.4) for 

the functional ti. If we denote the ith colssm of the matrix frfT, t) by 
ht(Z', t), and introduce the matrices 
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we obtain 

In what follows we shall assume that &,.,(t) exists. Since by the de- 
finition of o(t) 

the *ation (4.9) yields 

9% (6) = Y-l (VP.a (6) Y-‘(O)* itt (v) = r-‘(v) ;pm (v) Y-l (v) (4.13) 

Furthermore, one can easily verify that +,,w(r) is a positive definite 
matrix. 

Integration by parts of the ExPression (4.12) leads to 

T 
(4.14) 

ji:: 1 Q SP [Y-l (6) r; (6) Y-l (6) 400 (6) + \ Y -1 (z) ri (v) Y-l (v) im (v) d’] 

Except for the 
only through y(r ) 

0 

factor l/g .2, the p. enter into 
which is dven by t e relation i 

the Equations (4.14) 

(4.15) 

Fran the Equations (4.14) and (4.1‘5) one can obtain the equations 
1 . = k i which dete*&iae the g i. 
f&m 

Ihe optimum t 2(Tf is obtained in the 

as (T) = SP ((\1m (T) - %a (T)) + I* (4.16) 

where 

1, = SP [y-l (O)%a (0) y-l (0) + i y-’ 0) +.o (0 7-l 
6 

(1) dt ] (6.17) 

In the general case, at least one solution is obtained in the form of 
a limit when some of the pi tend to zero (compare Section 5). With the 
aid of the Equations (3.12) it is not difficult to verify that the ith 
coordinate of y(t) has an infinite number of possible values if Ii < ki. 
Hence, in the given problem, the only case of interest, except for the 
limiting case, is the case of nonzero Iri treated in this section. 
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5. In order to establish the existence of pi satisfying the condi- 
tions 13.51, we consider the quantity 1 defined by the relation 

T 

1 = sp r-1 0 [ ( ) $00 (0) + \ Y-l (0 $0" W dtj (5.1) 
; 

If one compares this expression with the Equations (4.14), (4.15) and 

(4.171, one can obtain 

(5.2) 

Taking into account the fact that I and Zi are not negative, one can 
prove that 1 is a continuous function of pi in the closed region pi > 0. 
Therefore, the function 

will take on at some point pi0 > 0 a maximum value HI,,. If all the 

p i0 > 0, then Zi = Ki, and the y(t) found in the preceding sections will 
be the sought optimal value. Let us now assume that, without restricting 
the generality, 

pi0 > 0 (i = f,..., p), Pi0 = O (i==p+f,...,m) 

For arbitrary pi1 > 0, let us consider 

(5.4) 

when p + 0. One can show that, when p -t 0, y(f) tends to a value yO(t) 
which is a solution of the Equations (3.12) when pi = pi0 (i = 1, . . ..d. 

For this solution, the functionals 
tionals ti. When i Q p, we have 14 = 
satisfied. The remaining Ii0 (i = p + 

P il, The following relations, similar 

,rt 

wbere 

Ii0 are the limits of the func- 
ki, i.e. the conditions (3.5) are 
1, . ..) ar) depend on the values 
to those of (5.21, will hold: 

(5.5) 

1’ = SP [B1 (O)%, (0) + f Bl ft) ¶$m (1) d'] (5.6) 
0 

'lie positive semidefinite matrix B,(t) is determined by means of 
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A (4 =E+S &r,(t), 
i=l 

B 0) = i & rt (4 
i=P+l 

101 

(5.7) 

and by some matrix U(t), through the equations 

R (t) A-’ (t) = B (t) A-’ (8) B (t) Bl (t), 231 (t) = u (t) B (t) A-2 (t) (5.8) 

FromHGH .~= follows the inequality 

I’\( : pirk (5.9) 
tap+1 

If I = p + 1, we obtain lm O Q k, directly from (5.5) and (5.9). In 

order to prove in the general case the existence of those pi1 for which 

the inequalities Ii0 Q ki (i = p + 1, , . . , m) are satisfied, one has to 

establish, again, that I’is continuous in some closed region pi1 2 0. 

Therefore, the function 1’ will take a maximum value at some point pi2 

of the region p il ;P 0, Epilk i = 1. For those i for which p i2 > 0, one 

can prove directly that 1 i” G ki. 

If some of the pi2 = 0, one has to go to the limit again, and repeat 

all arguments. Since Spi2ki = 1, not all the pi2 are equal to zero, and 

one can prove by induction that there exists a solution y(t) that satis- 

fies the conditions Zi Q ki (i = p + 1, . . . . m). 

From the relations (5.6) and (5.9) it can be seen that the system of 

equations 1 i = ki has a solution pi > 0 for arbitrary (finite) ki > U if 

for arbitrary pii > 0 (i = 1, . . . . P)* and for some pil > 0 (i = p + 1, 

..*, n), 

sp c’ III (t) +oo (0 dt = 00 (5.10) 

0 

(Hereby one must, of course, take into account all p = 0, . . . . Ju- 1 

and all possible permutations of the indices i.) 

If MT, t) is an analytic function of t (!his is true, in particular, 

in the case of a stationary object), and if tiW(t) is a continuous func- 

tion of t when t = T, then the following assertion is true. If the in- 

equality 

hi’ (Tit) &a(T) = 0 (5.11) 

is false for every column hi(T, t) of the matrix h(T, t) and for every 

t, then there exists, for every ki a uniquely defined optimal system 



102 K. Shtaidcn 

with positive pi. 

6. As an application of the general results, we consider the problem 
of the synthesis of an automatic control system. Let us suppose that we 
are given an object whose motion is described by a system of linear 
differential equations, and that the external disturbances are random 
processes related to white noise by means of differential equations. 0y 
menas of a change of coordinates, the equations can always be reduced to 
the form 

1;'(t) = Cll 0) 5 (4 + Cl (t) Y (4 + Ca (4 u (0 (6.1) 

where r(t) is a calm of the coordinates of the system, u(t) is white 
noise, and the C. are given matrices. For the control elements we take 
some linear combinations r(t) = M<(t) of the coordinates of the system. 
Suppose that we are measuring linear combinations Nr (t) with errors that 
are characterized by a process n(t). 

Just as above, we set ourselves the problem of minimizing c*(T) under 
the conditions Ii G ki, hut we are looking for a dependence y(t) on p, 
and on z(t) = N<(t) + n(t). In the given case we obtain a system of 
linear differential equations. We are given random quantities p, co 
(initial values of the coordinates (t)), and random processes u(t) and 
n(t). Let us suppose that u(t) and n(t) represent white noise and that 
they are not correlated, not in p and not in &,, i.e. 

%u 0) = 0, 9K.U 0) = 0, 9P?3 (0 = 0, 4J)r,n(O = 0 

4%&z)=EUt--z), %*(&M--Z), 
(6.2) 

%u (t, z) = 0 

Ihe hypotheses on n(t) have the physical meaning that all the quanti- 
ties N<(t) are measured independently of each other, with high-frequency 
errors that do not depend on the external reactions or on the state of 

the system. 

With regard to the column p we assume, without loss of generality, 
that either p = 0, or its coqonents are linearly independent and 

$ PP 
= E. 

7. In order to reduce this problem to the problem treated in the pre- 
ceding sections, e introduce the matrix of the fundamental solutions 

R(t), given hy the equations 

ii (t) = C, (0 R (0, R (0) = E (7.1) 

and set, for the sake of brevity, 

Dl (t) = R-i (t) Cl (t), De (t) = R-’ (t) C,(t), MI = MR (T) (7.2) 



Linear automatic control systems 103 

The Equation (6.1) can then be reduced to the form (2.1), whmeby 

s (t) = MR (t) [co + \ 01 (z) u (z) dr] (7.3) 

h (t, 2) = - MR (t) 0: (r) (7.4) 

In order to determine r(t) in the expression for r(t), we set Y w 0. 

We thus obtain 

r-(t) r= NR (1)[& + i&(r) u (T)dT] + fi (1) (7.5) 
0 

With the aid of the Equation (4.1) it is not difficult to verify that 
in our case 

0 (0 = JfP” (4 [‘kcop + i Q (z) R’ (z) N’ r (7) dr 
1 (7.6) 

0 

Hereby, 

P (t) = Q (t) R’ (t) N’NR (t), P (0) = E 

Q (4 = P 0) -Da (4 b (9, Q (0) = %, -k,olp'c,e (7.7) 

The Equations (4.9) and (4.10) yield y(t) expressed in terms of o(t). 
'Ihis expression in conjunction with (7.6) and the equation expressing 
r(t) in terms of z(t) and y(t), yields the sought system of equations. 
From (6.1) and (7.5) we obtain 

r (0 = 2 (t) - NR (t) \D' (T) y (z) d% (7.8) 
0 

and after a number of transformations, we obtain, finally, 

y (t) = Q”@)~l’ wKY-’ (4 Mlq (2) (7.9) 

Here the auxiliary columa q(t) satisfies the differential equation 

q (1) + [P-l (t) P (t) - Dl (t)@-' (t)& (t) M,'y-' (t) Ml1 q (t) = 

= - P-’ (t) Q (t) R’ (t) N’z (t) (7.10) 

with the initial condition 

ft (0) =illLPP (7.11) 

'Ihe matrices $,(O) and G_(t) are obtained with the aid of Equations 
(7.5) and (7.6) in the form 
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$aa (t) = MLP-’ (I) Q (t) R’ (t) A” WrP-’ (1) Q (t) R’ (t) WI (7.12) 

In the particular case when the quantities x(t) are linear combina- 
tions of the measured quantities N<(t) {i.e. when N= Calm), the 
criterion (5.111 indicates physically that for zero y.(t) (j f i) the 
optimal (in the sense of the least ~~(7')) control can'be selected inde- 
pendently of z(t) (i.e. the measurements z(t) will not make it possible 
to decrease ~~(7'9 with the aid of only the ith regulating element). 

8. In a conmete case the computing procedure is as follows, One has 
to be given the matrices G,(t), G,(t), G,(t), 8, #, q!qa50t GCoP, with 
the weight functions A;(t), and with the numbers ki and T. 

First one has to compute R(t) as B solution of the system of differ- 
ential Equations (7.1). Next one determines K'(t), D,(t), D,(t), M,, 
ri(t) (by the use of the Equations (7.4) and (4.111, P(t), atI as the 
solut,ion of the system of differential Equations (7.71, P-‘(t), sc/,fO> 
and r&,_,(t). With the aid of the Equations (4.14) and (4.151, one deter- 
mines the numbers pi from the system of equations I?~ = k,. After this 
one can compute p(t), y(t), yDi(t), find the optimal value E*(T) with 
the Equations (4.16) and (4.11) and obtain the optimal regulator from 
the Formulas f7.91, (7,LO) and f?.llf. 

In the case of a stationary object and stationary noises, i.e. when 
G,,, C,, G2, N, M, and Xi do not depend on t, R(t) is determined from a 
system with constant coefficients. The Equations (7.7) can be reduced to 
a system with constant coefficients. 

[P (I) R-r @)I= = - tP (t) R-r (t)I C, t EQ (t) R’ @)I N’N 

[Q (t)R' (t)]. = IP (t)H-r(t)1 G2Gz’ + [Q (t) N’ @)I G,’ (8.9 

so that in this case the coefficients of the equations of the optimal 
control are rational expressions in t and exponential functions of time. 

‘f”he subject matter of the present work is close to certain investiga- 
tions published earlier, The approach to the solation (Sections 3,4) 8r‘6 

based on general Methods developed in [l 1. The aroblem of the optimal- 
izabion at a given time aoaent was considered for the discrete case by 

3ooton r 2 1 II 

If one denotes bJ t 2” the optfsal valae r’(Tt, then the problem is 
eaofvalent to the ntnistzing of the iunctional x:riZi among al1 controls 

for which r*(T) < ezO. in this formulation, the problem is siIUillar to 

the ones considered, for example, in [ 3 1. The essential difference is 
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that we were looking for a control that would be optimal under given 
(definite or random) initial conditions. This Permitted us to confine 
ourselves to the knowledge of the second moments of the random functions. 

The solution of the problem with restrictions (definition o(t), 
Section 7) was given in [ 4 1 . 
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